

NASA National University Satellite Program Workshop Presentation

SPHINX

Space Hardening Inflatable Structures Experiment
Satellite Project

Presenter: Justin Tripp

Program Goals

- Demonstrate deployment mechanism and structural integrity of a tubular gossamer structure in an actual space environment
 - First satellite to test technology in space
 - ⇒ ideal for a student project
- Develop a cubesat picosatellite to accommodate experimental payload missions involving deployable structures.

Gossamer Structure Background

- Composite fiber material
- Flexible and inflatable at temperature above Tg
- Rigid at temperatures below Tg
- Wide variety of temperature regimes possible (Tg range from -20 to 100 °C)

Gossamer Structure Technology

• Packaged into small volumes and deployed into elaborate structures.

- -Low mass (~60% lighter than aluminum alloy)
- -High Strength
- -Versatile in application

Payload Options

L'Garde Corp.

ILC Dover, Inc.

Telescoping Style Boom

Rolled Style Boom

Payload Mission Criteria

Detect successful deployment – 50%

- Measure natural frequency of inflatable structure -40%
- Extended Mission 10%

Payload Configuration

CubeSAT

Payload Testing

UCSB CubeSat Project - SPHINX

System Budgets

MASS BUDGET

VOLUME BUDGET

Spacecraft design can accommodate a payload of 95mm x 95mm x 40mm size and ~150 grams mass.

Schedule

•	Payload	Critical	Design Rev	view A ₁	oril, 2002
	~			1	,

• Pre-integration design & testing April, 2002

Integration Readiness Review May, 2002

• Qual Testing May-June, 2002

• Flight hardware build June, 2002

• Hardware delivery July, 2002

• Launch (anticipated) Fall, 2002

